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The solidification of hot fluid flowing in a thin buoyancy-driven layer between cold 
solid boundaries is analysed in a series of two papers. As an approximation to flow in 
a crack in a weakly elastic solid or to free-surface flow beneath a thin solidified crust, 
the boundaries are considered to be flexible and to exert negligible resistance to lateral 
deformation. The resultant equations of continuity and motion reduce to a kinematic- 
wave equation with a loss term corresponding to the accumulation of solidified 
material at the boundaries. The Stefan problem for the solidification is coupled back 
to the flow through the advection of heat by the fluid, which competes with lateral heat 
loss by conduction to the solid. Heat and mass conservation are used to derive 
boundary conditions at the propagating nose of the flow. In this paper the two- 
dimensional flow produced by a line release of a given volume of fluid is investigated. 
It is shown that at short times the flow solidifies completely only near the point of 
release where the flow is thinnest, at later times complete solidification also occurs near 
the nose of the flow where the cooling rates are greatest and, eventually, the flow is 
completely solidified along its depth. Some transient melting of the boundaries can also 
occur if the fluid is initially above its solidification temperature. The dimensionless 
equations are parameterized only in terms of a Stefan number S and a dimensionless 
solidification temperature 0. Asymptotic solutions for the flow at short times and near 
the source are derived by perturbation series and similarity arguments. The general 
evolution of the flow is calculated numerically, and the scaled time to final solidification, 
the length and the thickness of the solidified product are determined as functions of S 
and 0. The theoretical solutions provide simple models of the release of a pulse of 
magma into a fissure in the Earth’s lithosphere or of lava flow on the flanks of a 
volcano after a brief eruption. Other geological events are better modelled as flows fed 
by a continual supply of hot fluid. The solidification of such flows will be investigated 
in Part 2. 

1. Introduction 
It is of importance to those living in the shadow of an active volcano to know 

whether lava from an eruption on the volcano’s flanks will cool, solidify and come to 
rest before it engulfs their homes. Similarly, geologists and volcanologists wish to 
understand in which circumstances molten rock, or magma, in the Earth’s interior can 
penetrate the solid surface layers of the Earth to initiate an eruption. These cases 
provide examples of the more general question: how far can a hot fluid flow into cold 
surroundings before it solidifies and flow ceases? 
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In these two papers we investigate this problem, giving particular attention to the 
form it takes for the transport of magma through fissures, or dykes, in the Earth’s 
lithosphere. Dykes are fluid-driven fractures, which propagate through the surrounding 
brittle rock owing to the injection of magma from a source region or reservoir (Pollard 
1987). Dykes are pervasive through the Earth’s crust, which suggests that magma- 
driven fracture is the dominant mechanism for the transport of magma towards the 
surface. Observations of seismicity associated with the advancing crack tip (Aki, Fehler 
& Das 1977; Einarsson & Brandsdottir 1980; Shaw 1980) and of the size of rock 
fragments carried by the flow (Spera 1980; Pasteris 1984) indicate that propagation 
rates are of order a few metres per second, and the effectiveness of magma fracture as 
a transport mechanism is often linked to this rapid propagation since it allows 
transport for large distances with little solidification. 

Magmas generated in the Earth’s mantle, some tens or hundreds of kilometres below 
the surface, rise to accumulate at the base of the colder brittle lithosphere. Episodically, 
the accumulated magma is tapped as the stress builds up and a new dyke is initiated. 
Owing to the buoyancy of the magma relative to the surrounding country rock, the 
primary direction of propagation is upwards. A full physical description of the vertical 
propagation would thus involve the interacting effects of buoyancy, viscous flow, 
fracture and elastic deformation, heat transfer and solidification. Previous studies have 
concentrated on simplified combinations of the ingredients in this complicated process. 

Early mechanical studies of dykes (e.g. Weertman 1971; Secor & Pollard 1975; 
Pollard 1976; Pollard & Holzhausen 1979) concentrated on solutions for the 
equilibrium shape of a stationary fluid-filled crack. These solutions may be relevant to 
the shape of exposed igneous intrusions if solidification takes place after propagation 
has ceased and the magma has come to rest. However, propagation is a dynamic 
process and scaling estimates of the forces involved show that the dominant resistance 
to propagation is the viscous pressure drop rather than the resistance of the host rock 
to fracture (Spence & Turcotte 1985; Lister 1990a; Lister & Kerr 1991). One corollary 
of this result is that the rheological change on solidification is more likely to cause the 
cessation of flow than to follow it. 

The scaling arguments also show that, for dykes of more than a few kilometres in 
vertical extent, the dominant driving force is buoyancy, which leads to a simple 
viscous-buoyancy balance. The pressures required to produce elastic deformation of 
the walls are much less than the available buoyancy forces (Lister 1990 a, 199 l), so such 
dykes should be thought of as flexible, rather than rigid-walled, conduits which dilate 
sufficiently to accommodate the flux arriving from below. These conclusions are 
confirmed in travelling-wave solutions for steady upward propagation of a two- 
dimensional crack fed by a continuous linear source (Spence, Sharp & Turcotte 1987; 
Lister 1990b); elastic stresses are found only to be significant in the vicinity of the crack 
tip, below which the crack width tends to a constant value prescribed by the 
viscous-buoyancy balance and by the fluid supply rate. Using this result to justify the 
neglect of the details near the crack tip, Spence & Turcotte (1990) derived simple 
solutions for propagation from a two-dimensional constant-volume release. A similar 
approximation will be used below in our analysis of the interaction between 
solidification and flow. 

Thermodynamic studies of the effects of heat transfer and solidification in cooling 
dykes are reviewed by Delaney (1987). The usual approach (e.g. Fedotov 1978; Wilson 
& Head 1981; Turcotte & Schubert 1982; Spence & Turcotte 1985) is to calculate the 
heat transfer by using one-dimensional diffusional models, thus neglecting any effects 
of advection and assuming that the magma has already come to rest. Approximate 



SolidiJication of buoyancy-driven %ow. Part 1 23 

blocking criteria are obtained by inserting this static solidification time into a model of 
flow without solidification. Coupled solutions for solidification and flow in an 
established rigid-walled conduit (Delaney & Pollard 1982; Bruce & Huppert 1989, 
1990) highlight the importance of advection in the solidification problem and allow 
blocking criteria to be established for this case. However, solutions for heat transfer in 
a propagating and deformable conduit have yet to be given. 

This context provides the motivation for the present study. We investigate 
solidification within a fluid-driven propagating crack embedded in an elastic solid. In 
$2 it is argued that elastic resistance is negligible away from the crack tip and the 
problem is reduced to calculation of heat transfer in a thin buoyancy-driven layer of 
hot liquid between cold and freely deformable solid boundaries. Lubrication 
approximations are used in the equations of heat and mass transport. The flow is 
described by a kinematic-wave equation with a loss term associated with solidification 
at the boundaries of the flow. Heat transfer is described by one-dimensional diffusion 
into a semi-infinite domain in the solid and by the interaction between along-stream 
advection and cross-stream diffusion in the liquid. The two heat-transfer problems are 
coupled by a Stefan boundary condition, which determines the local rate of 
solidification. At the propagating nose of flow, which is represented by the frontal 
shock of the kinematic wave, conservation of heat and mass are used to derive 
boundary conditions consistent with the lubrication approximation. 

In $43 and 4 these equations are solved for the case of the two-dimensional flow 
produced by release of a given volume of fluid from a line source. For simplicity, the 
thermal properties of the fluid and solid are assumed to be equal. With a suitable non- 
dimensionalization, the system can be parameterized by a Stefan number S =  
L/C,( T, - T,) and dimensionless temperature 0 = (q - T,)/( T, - T,), where T, and 
T, are the initial temperatures of fluid and solid, q is the liquidus temperature, L is 
the latent heat and C, the specific heat capacity. As described in $3, if the fluid is 
initially at its liquidus temperature (0 = 1) the thermal equations are greatly simplified 
and the remaining equations can be solved by a modified method of characteristics. 
Asymptotic solutions for short times and for the near-source region are used to 
complement a complete numerical solution. The more general case 0 $I 1 is analysed 
in $4 and the results discussed in $ 5 .  

The most geologically significant conclusion is that the flow is completely solidified 
after a finite distance and time of propagation, which are evaluated as functions of S 
and 0. The shape of the final solidified product is also calculated. The analysis is easily 
adapted to viscous flow down a slope under a cooled, solidifying but flexible crust, as 
appropriate for lava flows (Fink & Griffiths 1990). 

2. Derivation of model and scaling 
Consider the release from a horizontal line source of incompressible fluid of density 

pf into a crack embedded in an infinite elastic solid of greater density ps. The buoyancy 
of the fluid drives upward propagation of a two-dimensional crack which, with a 
suitable choice of coordinates, occupies 1x1 < h(z, t )  for 0 < z < z,(t), where x is the 
cross-stream coordinate, z the vertical coordinate, z = 0 the level of release, z = z,(t) 
the level of the propagating crack tip and h the half-width of the crack (figure 1). 

Let the initial temperatures of the fluid and the solid be T, and T, respectively and 
suppose that the melting temperature of the solid and the solidification temperature of 
the fluid are equal and denoted by q, where T, < TL < T,. Thus the propagation of the 
crack brings hot fluid into contact with cold solid and solidification or melting occurs. 
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FIGURE 1. Definition sketch. A fluid of density pf, viscosity p, initial temperature T, and solidification 
temperature is driven by buoyancy through a flexible conduit of width 2h(z, t )  embedded in an 
elastic solid of density p ,  and far-field temperature T,. The fluid solidifies to form a chill of width c, 
thus reducing the width of active flow to 2w. 

In consequence, we need to distinguish carefully between the total crack width 2h, as 
defined by the lateral deformation of the original solid, and the active flow width 2w, 
which is the thickness of the layer at the centre of the crack that is still fluid. The chill 
thickness c = h - w is thus the thickness of the solidified layer at the edge of the flow 
(defined to be negative if melting has occurred). Whereas h is the natural variable to 
describe the elastic deformation, w and c are the natural variables to describe the flow 
and solidification problems. 

2.1. The fluid and solid mechanics 
Let the elastic response of the solid to deformation be described by shear modulus G 
and Poisson’s ratio v. The deviatoric elastic stress in the walls of the crack is thus given 
by 

cxx = InX{i3h/az} (2.1) 
(Muskhelishvili 1963), where m = G/( 1 - v) and %{ .> denotes the Hilbert transform. 
The flow in the crack is driven by the gradient of the total effective pressure p(z ,  t),  
which represents the sum of the buoyancy and elastic forces 

(2.2) P = - A m  - c x x ,  

where Ap = ps -pP For simplicity, we assume that the effects of temperature on 
viscosity are dominated by the sudden increase on solidification and adopt a uniform 
fluid viscosity ,u for T > G. (If necessary, numerical calculations with an empirical 
p ( T )  would be possible.) If the crack is sufficiently narrow and the fluid sufficiently 
viscous then 

and the flow may be analysed by lubrication theory. The vertical fluid velocity is given 
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FIGURE 2. The dimensionless travelling-wave solution for buoyancy-driven fluid fracture with no 
solidification and negligible stress intensity (Lister 1990b). Elastic forces are only significant in the 
bulbous head of the wave; elsewhere there is a simple viscous/buoyancy balance. 

by laminar Poiseuille flow driven by t!p/az with u, = 0 at 1x1 = w. The small lateral 
velocity is calculated from the local equation of continuity. Thus 

u(x,z,t) = - - (w2x4x3)- ,(x2-w2)- (1x1 < w). 2p ("( a Z  "1 a Z  "i aZ 

The cross-sectionally averaged equation of continuity gives 

aw 1 a ap ac 
at 3,a4  a,) at' 
_-__ w3- =-- 

where the solidification rate ac/at is determined by the thermal transport. It should be 
noted in the derivation of (2.5) that the lateral velocity u, at x = w is equal to the 
material velocity ah/at and not the velocity of the phase boundary awlat. 

In the absence of solidification w = h and so (2. l), (2.2) and (2.5) may be combined 
to yield 

Equation (2.6) admits a family of travelling-wave solutions parameterized by the rate 
of propagation and the stress intensity ahead of the crack tip (Lister 1990b). The 
solutions exhibit a bulbous head in which all three terms of (2.6) are important, 
followed by a tail in which there is a simple viscous-buoyancy balance and elastic 
forces are negligible (figure 2). More generally, solutions of (2.6) may be considered as 
buoyancy-driven kinematic waves in which elastic forces only act locally to smooth the 
frontal shock over a vertical distance 

z ,  = O(mw/gAp)li2 (2.7) 

(Lister & Kerr 1991). If the vertical extent of the flow is much greater than z, then the 
elastic term may be neglected and conservation of mass used to calculate the rate of 
propagation of any shocks (e.g. Spence & Turcotte 1990). We use this approximation 
in the analysis below, thus considering the walls of the crack to be perfectly flexible, but 
retaining the solidification term in (2.5). 

2.2. Thermal transport and soiid$cation 
We suppose, for simplicity, that the thermal properties of the solid, the fluid and its 
solidified product are equal. Conservation of heat is represented by 

aT/a t+u-WT= K V ~ T ,  (2.8) 

where K is the thermal diffusivity and u is given by (2.4) in the liquid region and by the 
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FIGURE 3. (a) The streamlines in the frame of reference moving with the nose are nearly parallel 
except within an O(w) distance of the nose. Within this region the thermal boundary layer (stippled) 
is still very thin since G W / K  % 1. (b) In the lubrication approximation the turn-round region is 
neglected and streamlines are identified in such a way as to conserve both heat and mass. 

rate of deformation in the solid region. We are interested in cracks that propagate 
many times their own width before solidifying. Comparison of the solidification 
timescale O(h2/K) with the advection timescale O(h/zi), where li is a typical velocity 
based on (2.4), shows that we require 

ih/K + 1. (2.9) 

This condition leads to two simplifications in (2.8). Firstly, the cross-stream 
temperature gradients are much larger than the along-stream gradients and we may 
neglect the term K(a2T/i3z2) which corresponds to along-stream conduction. The 
simplified equation is hyperbolic in z and t and requires ‘upstream’ boundary 
conditions to be specified. Secondly, during solidification the heat from the fluid only 
has time to diffuse a distance O(h) into the solid on either side of the crack. Since this 
is much less than the lengthscale O(z,) characteristic of the elastic deformation in the 
solid, we may approximate 11 in the solid by the rate of lateral displacement of the crack 
walls 

u(x,z,t) = sgn(x) - , O  = sgn(x) -+-,O (1x1 w). (2 ) i: ;; ) (2.10) 

A third simplification arising from (2.9) occurs in the thermal boundary conditions 
at the nose of the flow. Within the kinematic-wave approximation, the nose of the flow 
corresponds to a shock whose propagation rate may be shown by conservation of mass 
to be equal to the mean velocity in the Poiseuille profile just behind the shock (figure 
3b). From (2.2) and (2.4) we find that 

(2.1 1) 
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where h,  = h(z,) and w, = ~(2,) .  In the frame of reference moving with the nose, the 
actual streamlines will be as shown schematically in figure 3 (a). Rapidly moving fluid 
in the central region of the flow catches up with the nose, is turned round within an 
O(w) distance of the nose, deposited near the stationary crack walls and then left 
behind again. In using the kinematic-wave approximation, we have argued that we 
may neglect the details of the flow in the turn-round region in the immediate vicinity 
of the nose and consider the streamlines to be as shown in figure 3 (6).  We now make 
a similar approximation for the thermal transport at the nose. We neglect cross-stream 
conduction in the turn-round region since the thickness O(Kw/zi)'12 of the thermal 
boundary layer at the exit of the turn-round region is much less than w by (2.9). Thus 
we identify the temperature on the incoming streamlines in w N / 2 / 3  d 1x1 < wN with the 
temperature on the corresponding outgoing streamline in 1x1 < w,/1/3. This boundary 
condition is consistent with the hyperbolic nature of (2.8) after the neglect of along- 
stream conduction. We also find that h,  = wN. 

At the solidification boundary the temperature must be equal to the solidification 
temperature and the release of latent heat is balanced by a discontinuity in the 
conductive heat flux. Hence, we obtain the thermal boundary conditions 

T =  (1x1 = w),  (2.12) 

(2.13) 

where [.IT denotes the difference between values at x = w, and x = w-. Further 
boundary conditions are provided by the initial temperatures of fluid and solid and the 
temperature at infinity. 

2.3. The scaled system of equations 
Before summarizing the system of equations to be solved, it is convenient to define 
dimensionless variables in terms of a reference width h. We define a dimensionless 
temperature by 

and non-dimensionalize the remaining variables with respect to the scales 

(2.14) 

Among the associated dimensionless groups we may identify a Peclet number, modified 
Reynolds number and elastic parameter by 

Pe = hz h / K  = g d p h 3 / ~ p ,  ( 2 . 1 6 ~ )  

(2.1 6 b )  

M = (m/gAph)If2. ( 2 . 1 6 ~ )  

The use of linear elasticity in (2.1) requires M b 1 ,  the use of lubrication theory in (2.4) 
requires Re 6 1 ,  the neglect of along-stream conduction in (2.8) requires Pe b 1 and 
the neglect of the elastic pressure in (2.2) requires z ,  6 z" or, equivalently, M G Pe. 
These conditions are satisfied for a range of geologically reasonable parameters. 
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When expressed in the new dimensionless variables, the simplified forms of (2.4), 

0 ,+U.V0  = o,,, (2.17) 

(2.1 8 a) 

(2.1 8 b) 

(2.5), (2.8) and (2.10)-(2.13) are 

u = ( -wwzx,f(w2-x2))  

u = (- WZW,, 0) 

(0 6 x 6 w), 

( w  d 4, 
wt+w2w,+ct  = 0 (0 < z < ZN), 

SC,+[O,]' = 0 ( w  > O), 

(2.19) 

(2.20) 

8(w,z, t) = 0, (2.21) 

dz,/dt = f ~ : ,  

c(zN) = O, 

together with symmetrical conditions in x < 0, where 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

and subscripts t ,  x and z denote partial derivatives. The initial and far-field temperature 
in the solid is 8 = 0 and the initial temperature in the fluid is 0 = 1. 

The stream function in the frame of reference of the nose of the flow is proportional 
to w2x-x3.  By considering the solutions of w2x-x3 = ~ ~ 2 - 2 ~ ~  we deduce that the 
incoming streamline at (x, zN), where w N / d 3  < x < w N ,  corresponds to the outgoing 
streamline at (Z , zN) ,  where 2(x) is the positive root of 

Z2+x2+x2 = w;. (2.26) 

Thus the thermal boundary conditions to be imposed on (2.17) at z = zN are 

O(x, zN, l )  = 8(2(x)? zN, ( w N / 2 / 3  < < w N ) >  (2 .27~)  

O(x,z,, t )  = 0 ( W N  < 4, (2.27b) 

together with symmetry in x = 0. 
Equation (2.19) requires w(0, t) or, equivalently, the source flux to be specified. The 

case of continual release is analysed in Part 2 (Lister 1994). In the following sections, 
however, we analyse the case of an instantaneous point release of a fixed (two- 
dimensional) volume Q at t = 0 for which w(0, t) = 0 when t > 0. The dimensional 
volume of such a release may be scaled out of the problem by use of the reference length 

h = (3Qp~/4gdp)"~, (2.28) 

to obtain the dimensionless boundary conditions 

r N ( t )  

lim lo 2w(z, t)dz = %, lim zN(t) = 0. 
t*o+ t+o+ 

(2.29) 

As a preliminary to solving the full system of dimensionless equations, it is helpful 
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to consider a simple solution in which solidification is neglected, corresponding to 
either of the limits S+ 00 or t+O. In this case, we need only to solve 

wt+w2w, = 0 (0 < z < ZN) (2.30) 

subject to (2.22) and (2.29). The solution is readily calculated by the method of 
characteristics to be 

(2.3 1 a, b) w(z, t) = ( Z / t ) l / Z ,  ZN = t1I3 

(e.g. Huppert 1982; Spence & Turcotte 1990). 

3. Fluid initially at its liquidus temperature: 0 = 1 
The solution of (2.17)-(2.29) is greatly simplified if the fluid is initially at its liquidus 

temperature, corresponding to 0 = 1.  The initial fluid temperature is thus equal to the 
boundary temperature imposed by (2.21) for t > 0, and hence the solution of (2.17) in 
the fluid region is trivially 

We note that, since the fluid temperature remains constant when initially on its 
liquidus, it is possible to extend the analysis to turbulent flows without need for an 
empirical turbulent heat-transfer function ; solutions for turbulent flows are derived in 
Appendix A. 

The velocity field in the solid is a simple lateral displacement, and use of the 
coordinate transformation x' = x - w - c together with (2.18 b)  and (2.19) reduces 
(2.17) to 

It follows that the thermal problem posed by (2.20), (2.21), (2.23), (2.27), (3.1) and (3.2) 
is equivalent to one-dimensional solidification of a liquid placed in contact with a semi- 
infinite cold solid at time t = tN(z),  where t,(z) is the time at which the nose of the flow 
reaches z. While w remains positive, the solution is given by 

8 = 1 (1x1 < w). (3.1) 

et = ezrz, (x' 3 -c). ( 3 4  

erfc( X' ) 
2(t - t J ' 2  e =  (x' 2 -c, t > tN) ,  erfc (- A) 

(3.3a) 

c = 2h(t - tN)1'2 ( t  ' t N )  (3.3 6 )  

(Carslaw & Jaeger 1959), where h(S)  is the root of 

S X ' / ~ A  ehz erfc (- A) = 1 .  (3.3c) 

This solves the thermal problem in terms of the function t,(z), which is as yet 
unknown. 

Substitution of (3.3 b)  into (2.19) yields the modified kinematic-wave equation 

Wt + WZW, = - h[t - tN(Z)]1/2 (w > O), (3.4) 
in which the loss term on the right-hand side corresponds to solidification and f, is 
found from (2.22). The dependence on h can be scaled out by defining 

= zh2I5, W = wh-'I5, T = th6I5 (3.5) 
but for the moment we retain it as a convenient expansion parameter in the following 
section. 

2 F L M  212 
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3.1. Short-time expansion 
In the limit h+O the solution of (3.4) must tend to the solution (2.31) without 
solidification. This suggests that we can use the method of characteristics to seek a 
perturbation expansion for the limit of slow solidification or, equivalently, of short 
times. We label characteristics z(t; q5) by q5 = limt-+o w2, and write (3.4) as 

(az/at), = w2, (3.6a) 
(awlat), = - h/[t  - t,(z)li/2 (w > 01, (3.66) 

z(0; q5) = 0, w(0;  q5) = q5? (3.6c, d )  

The solution is expanded as 
z(t;q5) =z0+h~,+O(h2) ,  w(t;q5) = wo(t;q5)+hw,(t;q5)+O(h2), (3.7a, b) 

fN[Z(t; #)] = t,(z)+ht,(z)+O(h2). (3.74 

The leading-order solution, equivalent to (2.3 l), is clearly 

zo = $t, wo = $112, to = z3 = (q5t)3. (3.8 a-c) 

Substituting into (3.6) at O(h), we find that 

Wlt = - i/(t - q 5 3 t 3 y 2  = 2w, wl. (3.9) 
By integration and use of the identity w1 = (w, t),-wIt t, we obtain 

(3.10a) 

(3.10b) 

where the integrals may be evaluated if required in terms of elliptic functions 
(Gradshteyn & Ryzhik 1980, equations 3.131.5 and 3.132.4). In order to solve (2.22) 
for the O(h) correction to the rate of propagation of the nose, we need to re-express 
w as a function of z and t and find w(zN, t). Accordingly, we define 

w(z, t )  = Wo(Z, t) + hw,(z, t) + O(h2). 

Comparison with (3.7) and (3.8) shows that 

(3.11) 

Qo(Z, t) = wo(t; z/t) = (z/t)”2, (3.12a) 

We use (3 .8~)  to write (2.22) in the form 

W1(tl/3, t )  
W0(t”3 ,  t) 

dZN 3- = Wi(Z,, t) dt 

(3.12 6) 

(3.13) 

which may readily be integrated to obtain 

where B denotes the beta function 

T(b) va-’( 1 - ~ ) ~ - l  dv = 
r ( a  + b) 

(3.15) 
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FIGURE 4. The first-order perturbations: wl( t ;  4) = 4-3/4p(43/2t), zl(t; 4) = 4-7’4q(43/2t) and 
q ( z ,  t )  = t1/2r(z3/ t ) ,  where p ,  q and r are as shown. 

and B($ f) z 2.396. Hence t ,  = !B($ f) zl1”, which completes the solution to this order. 
The first-order perturbations wl ,  o1 and z ,  are shown in figure 4. Higher-order 
corrections can be calculated as described in Appendix B. 

The initial effects of solidification can be seen in the first-order solution. From (3.13) 
the fluid width is everywhere less than the non-solidifying solution (though the total 
width h is greater) and from (3.14) the rate of propagation is decreased. Though we 
have solved the equations by expansion in the limit h+O, the solution can also be 
considered as an early-time expansion in the limit t + 0. As might be expected from 
(3.5), these viewpoints can be combined into the asymptotic requirement T = h516t + 1 .  
However, the solution (3.12) is not uniformly valid for all z since oo K zliZ and o1 
tends to a constant as z +- 0 with t fixed. We therefore also seek an asymptotic solution 
to (3.4) in the limit z + 0. 

3.2. Near-source similarity solution 
Clearly t,(z)+O as z+O. Hence, for sufficiently small z we can assume that t + 
tN(z )  and approximate (3.6b) by 

(aw/aT)$ - - T-”~ ( W >  0). (3.16) 

(Henceforth, we will use the rescaled variables defined by (3.5).) Equations (3.16) and 
(3.6a) may then be integrated to obtain 

(T  < 3 1 2  
W - $112 - 2T1’2 

Z - T -k ;$li2 T ’ I 2  -k 2 T2.  

We eliminate $ and find a self-similar solution of the form 

W = T1”F(Z/T2) ,  

where F(7) = (Yj-;)””g (7 > $), 

= O  (7 < 3. 
Hence, complete solidification begins near the source and occupies a zone 

0 < Z < Z ,  - gT2. 

( 3 . 1 7 ~ )  

(3.17b) 

( 3 . 1 8 ~ )  

(3.18 b)  

(3.18 c)  

(3.19) 
2-2 
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X Proportion 

FIGURE 5. (a) The flow width (solid lines) obtained from (2.22) and (3.4) as a function of vertical 
distance 2 at successive times T = 0.1,0.2, . . ., 0.7. The effects of solidification are strongest near the 
source where the flow is narrow and near the nose where the temperature gradients are steep. 
Propagation ceases at T = 0.52 and solidification is complete by T = 0.72 (0) .  Also shown is the 
deformation of the original solid at T = 0.1, 0.2 and 0.3 (dashed) and the final chill thickness C, = 
c P 5  (long dashed). (b) The proportion is,"-.' C, d Z  of the initial fluid that reaches level Z. If a dyke 
reaches the Earth's surface then this will be the proportion of magma erupted. 

For T 2  g Z 4 Tli3 the solutions (3.12) and (3.17) are matched by the common 
asymptotic form 

W - (Z/T)1i2-$T1'2.  (3.20) 

3.3. Numerical solution 
As described above, asymptotic methods have been used to determine the first effects 
of solidification on the propagating flow. The asymptotic results provide both starting 
conditions and accuracy tests for numerical integration of the full evolution of the flow. 
We observe first that, if we are given TN(Z),  it is straightforward to integrate (3.6) 
using, for example, a fourth-order Runge-Kutta method. The function TN is 
determined by the requirement that if a characteristic Z(T; #) crosses the curve T = 
TN(Z) then the value of W obtained from (3.6) is related to dT,/dZ by (2.22). 

Suppose we know TN(Z) for Z < Zi, that the characteristic reaching the nose at Z, 
is 4, and that the width at the nose is q. We extend this solution by the quadratic 
approximation to the Taylor series, 

(3.21) 

that is consistent with (2.22) at Z,. The value of ai is determined iteratively by requiring 
consistency between (2.22) and (3.21) at the intersection Z,+] of the characteristic 
#i+l = $,--A# with the quadratic extension. By starting with the asymptotic form 
TN(Z) - Z3 +!B($, $) Zl1/' for Z < Z,, where Z, < 1 ,  and making successive extensions 
with small increments A#, we can thus generate a numerical solution. 

The flow and chill widths are shown at successive times in figure 5 (a). At early times 
the flow width is qualitatively similar to the solution without solidification (2.31), but 
with small deviations described by the perturbation solution (3.12). Complete 

T,(Z) = TN(Zi) + 3(Z-  Z,)/ w; + a,(Z- Z,)Z (Z > Z,), 
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FIGURE 6. The figure shows (i) the propagation of the nose of a flow on its liquidus (ON, upper curve) 
together with the zeroth and first-order short-time asymptotic solutions (2.31 b) and (3.14); (ii) the 
limits of the zones of complete solidification (0s and SN) together with the near-source asymptotic 
limit (3.19). Propagation ceases a t  N ;  solidification is complete a t  S. The solution was determined by 
a modified method of characteristics some of which are shown dashed. 

solidification begins at the source of the flow and extends upward as described by 
(3.19). At larger times the rapid rates of solidification near the nose of the flow cause 
the width there to decrease sharply and at T % 0.52 and Z z 0.48 the nose of the flow 
also solidifies completely and propagation ceases. The remaining fluid continues to 
move slowly upwards, but solidification is now dominant and the zones of complete 
solidification extend from both nose and tail. The last part of the flow solidifies at 
T z 0.72 and Z z 0.42. For application to dykes that reach the Earth’s surface it is 
interesting to note that if the flow is truncated at some level Z < 0.48 then only a 
proportion of the initial fluid reaches that level and erupts (figure 5b). 

The positions of the nose and the zones of complete solidification are shown as 
functions of time in figure 6, together with some characteristic trajectories. Along the 
segment ON the width W satisfies the nose condition (2.22) and hence the slope of the 
characteristics is three times that of ON at intersections. Along the segments 0s and 
SN the width is zero and hence the characteristics are horizontal. Owing to 
solidification, the characteristics do not cross after the nose is completely frozen, 
despite the possibility of nonlinear steepening and shock formation in a kinematic 
wave. The asymptotic results (3.14) and (3.19) for the positions of the nose of the flow 
and the zone of complete solidification are shown for comparison. 

4. Fluid initially above its liquidus temperature: 0 < 1 
If the initial temperature of the fluid is greater than the liquidus temperature imposed 

at the phase boundary x = w then temperature gradients develop in the fluid owing to 
the sidewall cooling. In this case, we must also consider the advection-diffusion 
equation (2.17) for the heat transport in the fluid and solution is much more difficult, 
both analytically and numerically, than for fluid initially at its liquidus temperature. 

4.1. Short-time expansion 
We may make some analytical progress by recognizing that the temperature contrasts 
at short times will be confined to thermal boundary layers near the stationary walls of 
the flow. We expect, therefore, that the effects of advection will initially be small, as can 
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be confirmed by scaling estimates. At leading order, solidification has no effect on the 
flow (cf. $3.1) and the scales of width, length and centreline velocity are given by I? - 
fr113, 2 - t113 and zi - tr21’3. The thickness of the thermal boundary layer grows 
diffusively and has width s  ̂- t’l’. Since s^ 4 @ for t 4 1, the thermal boundary layer is 
embedded in the shear flow at the edge of the Poiseuille profile and is, therefore, only 
subject to velocities of order zis^/G. The ratio of advection to diffusion in (2.17) is thus 

uo,/o,, - (GCf/G) 8/2 - P6 4 1. (4.1) 
Hence, advection induces an correction to the rate of solidification as calculated 
only from cross-stream diffusion and, as in § 3, the leading-order effect of solidification 
on the flow is itself an O(t5/‘) correction to the loss-less kinematic wave. Thus the effects 
of advection do not appear until second order in an expansion in powers of t5”j and we 
may use the techniques of $ 3.1. 

The transformation x’ = x - w - c now gives 

8, = 8 , ,  + O ( t 5 9  (x’ d O ( P ) ) ) .  (4.2) 
Near the source w + 0 and we will have to treat this region separately in the following 
section. Away from the source, however, w + S - O ( F )  and the growth of c near 
x’ = 0 may be calculated by treating the fluid as semi-infinite. One-dimensional 
solidification of a semi-infinite fluid of initial temperature 8 = 1 placed in contact with 
a semi-infinite solid of initial temperature 8 = 0 at t = t ,  is described by 

(l-o)erfc( -X’ ) 
2(t - tN)1’2 

8 =  1- (x’ d -c, t > t,), erfc h 

c = 2h(t - t J ’ 2  ( t  ’ t N >  

(Carslaw & Jaeger 1959), where h(S, 0) is the root of 

1 - 0  
erfc h ‘ 

-- 0 
erfc (- A) 

en2 = 

(4 .34 

(4.3b) 

(4.3 c) 

(4.3d) 

If 0 < $ then h < 0 and melting rather than solidification will occur initially. 
Once h has been found, the propagation and width of the flow are described by the 

perturbation solution (3.7)-(3.8) and (3.10)-(3.14), which is accurate to O(ht”‘). 
Calculation of the O(h2t513) corrections would involve the advection of the error- 
function temperature profile by the leading-order velocity field. Advection must also be 
taken into account near the source where the width of the flow is comparable to the 
thickness of the thermal boundary layers. 

4.2. Near-source similarity solution 
Near the origin we neglect t,(z) in comparison with t and expect that the lateral scale 
will be simply proportional to the diffusive scale ?li’. Accordingly, we look for a 
similarity solution of the form 

where 
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FIGURE 7. Contours of temperature 9 in the near-source similarity solution (4.6) for S = 1, shown 
in (c,<1'2) space in order to exhibit the asymptotic structure (4.7). The edge of the flow (bold) 
corresponds to the isotherm 9. = 0 ;  the extent of the deformation h = w f c  is shown dashed. 
Solidification is complete in 5 < cs; far from the origin the flow is solidifying if 0 > t and melting 
otherwise. (a) 0 = 0.25; (b) 0 = 0.75. 

In terms of the new variables, (2.17)-(2.20) may be written 
( f "25 ) f '+ i f=  S-1[8,]+, (4.6a) 

(4.6b) 
-259.3-CfY+M)9g = 9, (151 Bf) ,  (4.6 c)  

where f' = d f /d5. 
Equation ( 4 . 6 ~ )  is parabolic with -6 as the time-like direction. Equation (4.6b) is 

also parabolic in 5 and, providedf < 251;1'2, -cis the time-like direction throughout the 
flow. It follows that we need boundary conditions on 9 and f as 5- co. These are 
provided by the asymptotic form of the short-time solution (3.12) and (4.2) for z < zN .  
It is readily shown that 

f- p z - q ,  3 (4.7a) 

(4.7b) 9 -  

cfcfz - 57 - 251 9, - (ff' + :I 596 = a,, (151 d f ) ,  

(151 2 f) O erfc {;([fJ -f) - A}  
erfc (- A )  

(151 < f 1 (1 - 0) erfc ( f ( f -  151) + A}  
erfc A 9-1- (4.7 c )  

as 5- co. The remaining boundary conditions are 9( kJ 5) = 0 and 9+ 0 as 161 + GO. 

Equations (4.6) can then be integrated numerically using, for example, a linearized 
Crank-Nicholson scheme for 9 with the coefficients evaluated at the half-step and a 
second-order Runge-Kutta scheme for$ Such a scheme is second-order in both [and 5. 
(When 0 and S are both very small, corresponding to large amounts of initial melting, 
there is a small region in which f > (25)li2 and ( 4 . 6 ~ ~ )  must be integrated in the + 5 
direction; the solution in this region must be matched iteratively at the singular points 
of (4.6a) to the rest of the solution.) 

The similarity solutions shown in figure 7 for O = 0.25 and 0 = 0.75 with S = 1 are 
typical. In all solutions the flow is completely frozen in a region 0 d 5 d ls(S,  0), where 
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FIGURE 8. Contours of GIz as a function of S and 0 for the near-source solution (4.6). 
Solidification is inhibited by large Stefan number or large superheat 1-0. 
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FIGURE 9. Regions of melting and solidification for near-source solutions to (4.6) for S = 1 and 
varying 0. The transition 6, between melting and solidification asymptotes to 0 = t (dashed) as 
5- co. If t < 0 < 0.526 there is a finite region in which melting occurs owing to sharpening of 
temperature gradients in the fluid by the flow. 

&(S, 1 )  = $A2 from $3.2. Contours of are shown in figure 8. From the similarity 
scalings c cc z1/4 in the completely frozen region. 

When 0 = 0.75 the flow is solidifying everywhere. When 0 = 0.25 there is a 
transition point [ ,(S,  0) between melting far from the source and solidification close 
to the source. At a fixed value of z there is thus an initial period of melting after the 
hot flow arrives, but a later period of solidification as the finite thermal energy of the 
flow is depleted. The regions of melting and solidification for the near-source similarity 
solution are shown in figure 9 for S = 1. Whether there is melting or solidification as 
<+ 00 depends on whether 0 < f or 0 > a. Interestingly, if f < 0 < 0.526 there is a 
finite region in which melting occurs. At a fixed value of z in this case, there is an initial 
period of solidification as the hot flow is placed next to the cold boundary, a 
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FIGURE 10. Contours of temperature I9 in the solution for S = 1 and 0 = + at various times. The edge 
of the flow (bold) corresponds to the isotherm I9 = 0.5; the extent of the deformation h = w + c is 
shown dashed. (a) By t = 0.3 advection has substantially distorted the thermal boundary layer in the 
fluid; (b) by f = 1 .O most of the superheat in the fluid has been lost; (c) at t = 3.0 the nose of the flow 
is nearly completely solidified; ( d )  at t = 5.0 the entire flow is nearly solidified. 

subsequent period of melting as the temperature gradient in the fluid region is 
steepened by the straining component of the fluid velocity, and a final period of 
solidification as the thermal energy of the flow is exhausted. 
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4.3. Numerical solution 
While we have been able to analyse the initial evolution of the flow and the similarity 
structure near the source, the full evolution of the flow must be determined 
numerically. An important part of the solution is treatment of the free boundaries 
z = z J t )  and x = w(z, t) .  The spatial variables in the equations of heat and mass 
transport (2.17)-(2.19) are transformed to (z, F) by 

x =  x / w  (x < w), x= 1 + x - w  (x > w),  (4.8 a, b) 

z = 1 - (1 - Z/ZAV)1’Z. (4.8 c) 

This transformation maps the flow onto the rectangular domain 0 < x 6 1, 0 < z < 1 
and also stretches the region near z = zN in order to resolve the square-root 
singularities there. Where w = 0 the boundary condition at x = 1 is changed from 
(2.20) to Ox+ = 0 and the temperature is set to be uniform in K < 1. The initial 
conditions for the calculation were determined from the short-time asymptotics. 

The transformed equations for w,  c and the advective terms for 8 are hyperbolic with 
the direction of propagation being + Z for w and for 8 in the rapid parts of the flow 
and -Zfor c and for # in the slower parts of the flow and the solid region. Accordingly, 
%derivatives were discretized using a flux-conservative Lax-Wendroff scheme. The 
cross-stream derivatives in the transformed equation for 0 are still diffusive in character 
and were represented using a Crank-Nicholson discretization. Nonlinear coefficients 
were evaluated at a half-step in order to obtain a final scheme that was second order 
in both time and space. The accuracy of the calculations was tested by conservation of 
energy, by comparison with the asymptotic and liquidus solutions, and by grid- 
doubling. 

The effects of the superheat 1 - 0 are most important in the early stages of the flow. 
If 0 is less than about 0.5 then there will initially be regions of melting in the flow (cf. 
(4.3 d )  and figure 9). However, as the flow extends and thins, the superheat is soon lost 
to the surrounding solid and the flow increasingly resembles the solution for a flow with 
0 = 1. Zones of complete solidification spread first from the source, then from the nose 
of the flow and finally the whole flow is brought to rest. The evolution of the flow for 
the case S = 1,0 = is shown in figure 10. Owing to the superheat, the flow propagates 
further and for longer than the 0 = 1 solution and the shape of the final solidified 
deposit is markedly more asymmetric (cf. figures 5a and 10d). 

The time t,,, until final solidification and the total distance propagated z,,, depend 
strongly on 0 and S and each increases from zero at (S ,  0) = (0,l) to infinity as 0 --f 
0 or S +  a. For example, t,,, varies by three orders of magnitude between (S ,  0) = 
(&, 1) and (S,  0) = (lo,$). Much of this variation can be scaled out by comparison 
with the simple approximation in which the superheat is neglected. We observe that if 
the initial temperature of the fluid were 0 rather than 1 then the evolution of the flow 
would be described by the analysis of $3, but with h calculated from a rescaled Stefan 
number S / 0 .  Accordingly we rescale the numerical results by 

The rescaled values are shown in figure 11 
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FIGURE 11. Contours of (a) the scaled final propagation distance Z,,, and (b)  the solidification time r,,;,,, as functions of S and 0. The liquidus solution Z,,, = 0.48 and T,,, = 0.72 are good 
approximations if S >> 1 - 0 but significantly underestimate the true values if both S and 0 are small. 

If 0 = 1 then the results T,,, = 0.72. .. and Z,,, = 0.48 .. . from 93  are exact. 
Indeed, these values provide good approximations provided the latent heat S is much 
greater than the superheat 1 - 0. Even if the latent heat is only twice the superheat the 
true values of T,,, and Z,,, are underestimated by no more than 20% and 30% 
respectively. This approximation is particularly useful since it avoids the need to 
recompute the full solution to the problem for particular values of S and 0. 

5 .  Discussion 
In this paper we have analysed an example of a hot flow invading a cold 

environment. While the problem under discussion was motivated by a particular 
geological application to the propagation of magma-filled fractures in the Earth's 
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lithosphere, similar analytical techniques and ideas will apply to more general 
problems. Long thin flows can, as might be expected, be described by lubrication 
theory for both the heat and mass transport. However, the analysis is complicated by 
two novel features which arise in propagation into a cold environment. Firstly, the 
thermal evolution is influenced by the conditions both at the nose and at the origin of 
the flow so that the information transport in the heat equation is bidirectional (as in 
heat-exchanger problems) ; the upstream and downstream influences are coupled by 
cross-stream diffusion and cannot be solved for separately. Secondly, the equation for 
the propagation velocity of the frontal shock must be augmented by heat-conservative 
boundary conditions on the temperature at the nose of the flow. 

A number of asymptotic results have been obtained for a buoyancy-driven, fixed- 
volume, two-dimensional flow between flexible boundaries. The boundary-layer 
analysis of $4.1 shows that the initial effects of solidification (melting) are to retard 
(advance) the position of the nose from the kinematic-wave solution (in which zN cc 
P3) by an amount proportional to t7'6. Higher-order corrections may be developed as 
a regular perturbation series (Appendix B). Near the origin, the flow is self-similar and 
solidifies completely in a zone of length initially proportional to t 2  (553.2 and 4.2). In 
each case, if the fluid is initially at its liquidus temperature then the analysis is 
considerably simplified and can be generalized to turbulent flows. 

If the fluid temperature is initially above the liquidus then the interaction of 
advection, diffusion and latent-heat release can produce complex patterns of 
solidification and melting. At a given position it is possible to observe only 
solidification, or melting and then solidification, or even solidification then melting and 
then solidification again, depending on whether the dimensionless solidification 
temperature 0 = (TL- T,)/(T, - T,) is much greater than f, less than f ,  or just greater 
than f.  In rough terms, the flow will initially melt or solidify if 0 < i or 0 > i. 
Eventually, however, the flow will always solidify if 0 > 0, with complete solidification 
proceeding first from the origin and then also from the nose of the flow. 

From a geological standpoint, the most significant observation is that solidification 
brings the flow to rest after a finite time and distance of propagation. The calculation 
thus provides a quantitative demonstration that the penetration of dykes through the 
lithosphere can be limited by thermal effects as well as by any level of neutral 
buoyancy. The solutions given allow the final distance and time of flow and the shape 
of the solidified deposit to be evaluated. In dimensional terms the extent of flow is given 
by 

( 5 . 1 ~ )  

(5.1 b) 

where S* = S / 0 ,  h(S*) is the root of (3.3c), and the coefficients Z,,, and Tmax are 
given either by figure 10 or, if S 9 1-0 ,  by the approximations 0.48 and 0.72. 

The geological values of the parameters in (5.1) vary widely but, as an illustrative 
example of a basaltic dyke, we take A p  = 300 kg  IT^-^, p = 100 Pa s, Q = lo4 m2, C, = 
lo3 J kg-l OC-l, L = 4 x lo5 J kg-l, K = lop6 m2 s-', = 1200 "C and 
T, = 400 "C (e.g. Bruce & Huppert 1989; Spence & Turcotte 1990). Hence S = 0.47, 
0 = 0.94, h(S*) = 0.54 and we calculate that z,,, = 21 km and t,,, = 15 hours, 
corresponding to a final average width of 0.5 m. If the dyke intersects the Earth's 
surface then the proportion of magma erupted is given by figure 5(b). 

= 1250 "C, 
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A further observation of geological significance is that the shape of the final 
solidified product (e.g. figures 5 4  10d) does not reflect either the active region of flow 
at any time, or the static equilibrium of a fluid that solidifies post-emplacement. Thus 
the field geologist, whose only observation is often the solidified flow, may find it 
difficult to infer either the dimensions of the active flow or the dynamics of 
emplacement. 

The techniques developed herein are readily applied to a range of further problems. 
In the companion paper to this (Lister 1994) we examine the case of continual input 
of hot fluid and determine the conditions under which propagation will ultimately 
cease. It would be of interest to extend the calculations to unequal solidification 
temperatures of the initial solid and fluid, which would be expected to lead to a further 
order of complexity in the pattern of melting and solidification (cf. Huppert 1989). For 
lava flows, the convective or radiative heat transfer to the environment is relatively 
rapid (Fink & Griffith 1990) and the heat loss is limited by conduction through the 
solidified skin of the flow. In this case, lava flows with a thin flexible skin can be 
described by analysis similar to the above in which the fixed temperature condition at 
infinity is replaced by a fixed temperature condition at the outer margin of the chill. 
Alternatively, the effects of convection or radiation can be retained by use of an 
appropriate heat-flux condition on the margin of the chill. Such problems will form the 
basis of future investigations. 

I am grateful to R. C. Kerr and H. E. Huppert for constructive comments on an 
earlier version of this manuscript. 

Appendix A. Turbulent flows 
We have noted that if the temperature of the fluid is initially on the liquidus (0 = 1) 

then the fluid remains at a uniform temperature 0 = 1 for the duration of the flow. 
This allows us to extend the theory developed in $3, firstly to turbulent flows and 
secondly to higher-order terms in the short-time expansion. 

In the laminar regime the flux driven by the pressure gradient i3p/Plaz = -Apg is 

If the Reynolds number Re = ,ofq/,u exceeds 0(103) then the flow will be turbulent 
rather than laminar and the flux will be given by an appropriate empirical flow law. As 
discussed by Lister (1990a), two popular suggestions for the flow law are 

9 = (2Apg/3/4 w3. (A 1) 

q = 15.4[(Apg)*/,~p~]~” wl’/’, 

q = (8Apg/kpf) w3”, 
(A 2) 
(A 3) 

where k is a friction factor, each of which has some theoretical and experimental 
support (Schlichting 1968 ; Hirs 1974). Accordingly, we assume that in appropriate 
dimensionless variables the flow law takes the form 

q = wn+l/(n + l), (A 4) 
where (A l)-(A 3) correspond to YE = 2, $, and 

The remaining equations are 

respectively. 
As in $3, the thermal evolution is described by an error-function profile in the solid. 
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n z m a z  T t e z  

2 0.409 0.481 
7 0.426 0.539 
1 

5 

- 

- 

1 0.445 0.604 
2 0.483 0.715 

TABLE 1. The dimensionless solidification times and distances for a flow at its liquidus 
temperature which obeys a flux law q K wnfl 

with initial conditions 

The parameter h may be removed by the rescalings 

9 7 3 (A 8) z = Z ~ 2 / ( n + 3 )  w = W ~ - 2 ( n + 3 )  T = th2(n+l)/(n+3) 

and the rescaled equations solved by the method of characteristics. The solidification 
times and distances corresponding to (A 1F(A 3 )  are given in table 1 .  

The near-source behaviour can be analysed as in $3 .2  to show that 

Z( T )  = { W( T )  + 2 P 2  - 2 ~ ~ " ) ~  dT. JOT 
It follows that W = T1/2F(Z/T1+n/2),  where 

/ 3  \ 

and the incomplete beta function is defined by 

p( v; 0, b) = lov F1( 1 - ~ ) ~ - l  dv. 

Hence the zone of complete solidification near the source is given asymptotically by 

Appendix B. Short-time expansions 
A higher-order short-time expansion of (A 5)-(A 7) is better developed as an 

expansion in powers of q5 = limt+o W n  than of A. Let TN(q5) and Z,(q5) denote the time 
and position that the characteristic q5 reaches the front. We define a stretched time 
variable by ~ ( 4 )  = T/TN(q5) in order to fix the front at T = 1 .  Thus (A 5 )  may be 
integrated along a characteristic to yield 

where q5N(Z) is the inverse of ZN(q5). 
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$""Z(T;$) = z*(7;e) = Zo(7)+tZ1(r)+ ..., 

$,v(z )  = Z-"($,+$, Z a + $ 2 Z 2 a +  ...) = $Z*-n(~o+$1eZ*u+~2(€Z*~j~+ ...), 
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We now introduce e = $- - (n+3) /2n  and expand the unknowns by 

(B 20) 
( B  26) 

( B  2 4  

$(n+i ) /nT  N ( $ )  = T: = T,+cT,+.. . ,  

where a = $(n + 3 ) .  From (B 1) the equation defining a characteristic and (A 6) may be 
written as 

respectively, and we also have the identity 

$"Z(1; $11 = 4. ( B  3c) 
Substitution of (B 2) into (B 3) yields a series of equations at successive powers of e 
which determines the coefficients Zi(7), and $i. The expansion is regular (unlike the 
expansion in powers of A) and can be taken to arbitrary order. 

The leading-order coefficients that satisfy (A 7a) are 

z, = 7, q = $o = 1. (B 4) 
At order E', a little algebra produces 

Hence TN($N(Z)) = Z"+l 

which reduces to (3.14) when n = 2. 
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